
Strongly Secure and Efficient Data Shuffle on
Hardware Enclaves

Ju Chen
Syracuse University
Syracuse, NY 13244

jchen133@syr.edu

Yuzhe (Richard) Tang
Syracuse University
Syracuse, NY 13244

ytang100@syr.edu

Hao Zhou
Syracuse University
Syracuse, NY 13244
hzhou09@syr.edu

ABSTRACT

Mitigating memory-access attacks on the Intel SGX architec-
ture is an important and open research problem. A natural
notion of the mitigation is cache-miss obliviousness which re-
quires the cache-misses emitted during an enclave execution
are oblivious to sensitive data. This work realizes the cache-
miss obliviousness for the computation of data shuffling. The
proposed approach is to software-engineer the oblivious al-
gorithm of Melbourne shuffle [22] on the Intel SGX/TSX ar-
chitecture, where the Transaction Synchronization eXtension
(TSX) is (ab)used to detect the occurrence of cache misses.
In the system building, we propose software techniques to
prefetch memory data prior to the TSX transaction to defend
the physical bus-tapping attacks. Our evaluation based on
real implementation shows that our system achieves superior
performance and lower transaction abort rate than the related
work in the existing literature.

1. INTRODUCTION
Today we witness the emergence of hardware enclaves, a

trusted execution environment that protects trusted user pro-
gram against the untrusted operating system. A notable ex-
ample is the recently released Intel Software Guard eXtension
(SGX [4]) with increasing adoption for secure public-cloud
computing (e.g. in Microsoft Azure [7] and Google Cloud
Platform [2]). Various side-channel attacks on hardware en-
clave exploiting memory access pattern [27, 12, 19] have been
proposed and demonstrated feasible in practice. Defending
side-channel attacks on SGX-alike enclave architecture be-
comes an important and open research problem.

A natural notion of the defense is cache-miss oblivious-
ness: The hardware enclave features a trusted processor issu-
ing cache misses to access the memory in the untrusted world.
Security can be assured by making the boundary crossing of
cache miss oblivious to the sensitive data. This is especially
effective to defending the physical attack, e.g. by bus tap-
ping [13] and software attacks, e.g. page-fault controlled side-
channel attack [27]. In addition to the strong security, cache-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SysTex ’17 Shanghai, China
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

miss obliviousness helps induce better performance as cache-
miss oblivious algorithms have lower time complexity than the
classic word-oblivious algorithms [28, 21] (see § 4.1 for per-
formance discussion).

This work realizes the cache-miss obliviousness for data
shuffling computation. The data shuffling is a basic operation
used in many analytical computations. Specifically, we con-
sider the Melbourne shuffle algorithm [22] which divides the
data accesses in a shuffle to 1) the oblivious ones to a large ex-
ternal storage and 2) the non-oblivious ones to a small internal
storage. We map the internal storage to the cache inside trusted
process and the external storage to untrusted world (e.g. mem-
ory and disk). By this means, the cache misses that only touch
the untrusted memory are made oblivious and thus safe to be
disclosed.

When engineering the above mapping paradigm on SGX,
one challenge is how to conceal the internal storage in cache
with assured isolation. We leverage Intel Transaction Syn-
chronization eXtension [6], a Hardware Transaction Memory
feature in the latest Intel Skylake processor. TSX was orig-
inally designed for efficient concurrency. In this work, we
propose a technique to enable the TSX transaction to detect
cache misses; the observation is that TSX provides the capa-
bility of detecting early cache write-back (before the transac-
tion commit) and cache miss can be detected if one can equate

cache miss with cache write-back. The proposed technique
pre-fetches all memory referenced in a transaction and make
them dirty cache lines so that their eviction triggering write-
back can be detected.

In addition to cache-miss detection, we propose techniques
to avoid unnecessary transaction abort by carefully aligning
data in memory and ensuring no conflict during data prefetch.
Our technique leverages the specific semantic of oblivious
computation and is distinct from the compiler-based partition-
ing schemes such as T-SGX [24].

We conduct algorithmic analysis to demonstrate the better
complexity of our hybrid external-oblivious algorithms. More
importantly, we conduct performance study based on real im-
plementation, with the hope of verifying the advantage of
systems-level performance of the cache-miss oblivious com-
putation. The systems-level performance study is necessary
even in the presence of algorithmic analysis. Because the over-
head induced by cache-miss obliviousness, mostly due to TSX
transaction execution, is higher than that of word oblivious-
ness. Our performance study in realistic settings show that the
systems-level overhead of cache-miss obliviousness is negligi-
ble in the presence of better time complexity, and cache-miss
obliviousness causes an overall better performance than the

DOI: 10.1145/3152701.3152708

word-oblivious computation.

2. PRELIMINARY

2.1 Intel Software Guard eXtension
(SGX)

Intel SGX is a security-oriented x86-64 ISA extension on
the Intel Skylake CPU, released in 2016. SGX provides a
“security-isolated world” for trustworthy program execution
on an otherwise untrusted hardware platform. At the hard-
ware level, the SGX secure world includes a tamper-proof
SGX CPU which automatically encrypts memory pages (in the
so-called enclave region) upon cache-line write-back. Instruc-
tions executed outside the SGX secure world that attempt to
read/write enclave pages only get to see the ciphertext and can
not succeed. SGX’s trusted software includes only unprivi-
leged program and excludes any OS kernel code, by explicitly
prohibiting system services (e.g. system calls) inside an en-
clave.

To use the technology, a client initializes an enclave by up-
loading the in-enclave program and uses SGX’s seal and attes-
tation mechanism [11] to verify the correct setup of the exe-
cution environment (e.g. by a digest of enclave memory con-
tent). During the program execution, the enclave is entered
and exited proactively (by SGX instructions, e.g. EENTER

and EEXIT) or passively (by interrupts or traps). These world-
switch events trigger the context saving/loading in both hard-
ware and software levels. Comparing prior TEE solutions [5,
8, 1, 3], SGX uniquely supports multi-core concurrent execu-
tion, dynamic paging, and interrupted execution.

2.2 Intel Transactional Synchronization
eXtension (TSX)

The purpose of TSX is to enable atomic execution of a code
block or transaction from other processors’ view point. This
goal entails two requirements: 1) During the transaction exe-
cution, it is fully contained inside a processor and its memory-
access requests can all be resolved inside the data cache. In
other words, the transaction writes are buffered by dirty cache
lines without being reflected in the memory. 2) By the end of
transaction execution, the cached writes are successfully writ-
ten back and the transaction can be committed only when there
is no data conflict with other processor. A conflicting data ac-
cess occurs when there is a location being accessed by two
processors and at least one access is a transactional write.

To realize the two requirements, the TSX hardware supports
the capability of aborting the execution of a transaction under
various causes. It aborts a transaction when data conflict is
detected at the transaction commit time (Abort Cause AC1). In
order to detect data conflict, the hardware needs to track both
the readset and writeset of a transaction. The writeset needs to
be kept inside the L1 data cache (L1D) and readset needs to be
inside the L3 cache. Thus, it aborts the transaction when the
dirty data-cache lines are evicted, triggering cache write-back,
before the end of transaction (AC2). It also aborts upon the
readset exceeding the L3 cache (AC3). In addition, it aborts
upon various systems events such as page-fault, interrupts and
other exceptions delivered to the processor (AC4).

While TSX is originally designed for the performance and
programmability in multiprocessing, its capabilities can be
(ab)used for security purposes: It can be used to realize the
cache-based or register-based computation [15] and to protect

 x_begin

 ...

Prefetch:
 LD R15, 0x8231

 ST 0x8231, R15

 ...

Original data-access:
 LD RCX, 0x8231

 ...

 x_end

Execution Timeline

TSX guarantee

No cache write

back of 0x8231

TSX transaction

Figure 1: TSX (ab)used to detect cache misses: The hack here
is that no cache write-back of a dirty line means the line stay
present in the cache, implying a cache hit upon a memory re-
quest.

the private key from leaving a processor [16] by leveraging
the TSX capability of detecting early cache write-back. T-
SGX [24] defends the page-fault side-channel attacks by lever-
aging the TSX capability that page-fault events are intercepted
by the TSX abort handlers before the untrusted OS. This work
uses TSX for detecting cache-misses and for defending side-
channel attacks. The use of TSX in this work is elaborated
below.

2.3 Use of TSX for Detecting Cache-Miss
Our work requires to conceal the access-leaky internal stor-

age in cache. Any access to the internal storage cannot be
resolved by cache miss, which would otherwise leak the sen-
sitive access. To conceal the internal storage in the last-level
cache (LLC), it is equivalent to ensure no LLC cache miss
during the time period when the internal storage is being ac-
cessed. Thus, the key requirement of our work is to ensure no
LLC cache miss caused by internal-storage access.

TSX as is, however, does not provide this capability. For
instance, a cache miss in a transaction does not necessarily
cause the transaction to abort. A cache miss would abort a
TSX transaction when it replaces a line that is read or writ-
ten by the same transaction. The key insight of this work is
to prefetch the entire read/write set of a transaction, such that
the actual access must be served by cache hits (without leaky
cache miss). More concretely, TSX guarantees any attempt
to replace the prefetched cache line would abort the transac-
tion. With unreplace-able prefetched lines, the actual access is
guaranteed to be served by cache hits..

For example, consider the memory reference request of LD
RCX,0x8231 in the code sample in Figure 1. The memory
reference can be resolved by a cache hit or a miss. To ensure
no chance of cache miss, we prefetch the data to the LLC in
the beginning of the transaction (i.e. “LD R15,0x8231”).
After this instruction, the LLC cache-line buffering the con-
tent at 0x8231 is recorded into the readset of this transac-
tion and is “pinned” there; TSX guarantees any attempt to re-
place the LLC line will abort the transaction, which is further
captured by TSX abort handler. In other words, if the trans-
action does not abort when the execution reaches instruction
“LD RCX,0x8231”, the prefetched cache line is still present
at least in the LLC and the memory reference must not cause
LLC miss or cause any traffic on the system bus.

In general, the capability of prefetching transaction read-
/write-set and pinning them to unreplaceable cache-lines can
assist mitigate various memory-access attacks including phys-

ical bus tapping and cache-timing attacks. Bus tapping can be
mitigated due to pinned cache-line guarantees cache hits. The
cache-timing attacks are mitigated due to sharing cache-lines
between transactions.

3. SYSTEM DESIGN AND IMPL.

3.1 Threat Model
We mainly consider a memory-access attacker who either

directly sniffs the out-of-process memory-access traffic (e.g.
by bus tapping or by page-fault channel [27]) or indirectly
monitors the side-channel of cache timing [12].

The non-goals of this work includes the following attacks.
1) This work is complementary to rollback attacks load sealed
but stale data across power cycles and restore the system to a
stale state. 2) Given memory store both data and code, this
work focuses on data-memory. The code-access attacks are
orthogonal that exploit the access pattern to the memory re-
gion storing code, and that can be defended by existing tech-
niques [20, 24] on a small memory. 3) We don’t consider other
side-channel attacks exploiting timing information or power
usage [10]. 4) We don’t consider denial-of-service attacks that
the adversary declines to serve the requests from the enclave.

3.2 Security Definition
Intuitively, the memory-access obliviousness states that the

memory access trace in a program execution is independent
with any computation data (involving both input and inter-
mediate data). Consider the execution of a program P with
data input I . The execution produces the memory-access
trace T that consists of all the last-level cache misses. The
obliviousness requires that given two data values, I0 and I1,
the an oblivious execution produces the same trace, that is,
TP (I0) = TP (I1). This definition assumes deterministic
computation induced by P and is about “perfect” oblivious-
ness in the sense that it requires the traces under different in-
put data stay exactly the same. Due to the systems nature of
this work, we skip the more formal and generic definition of
cache-miss obliviousness (e.g. based on indistinguishability
formation [18]).

3.3 Step 1: Mapping Melbourne Shuffle to
SGX

In this work, we focus on implementing cache-miss obliv-
ious data shuffling. Data shuffle is a fundamental operator in
oblivious data analysis computation. We describe the engi-
neering of Melbourne shuffle [22] on Intel SGX. The idea is
to map the program of Melbourne shuffle to TSX transactions
and to isolate the leaky data access in cache by abusing TSX
capability. Note this work only considers single-threaded exe-
cution.

Preliminary of Melbourne shuffle [22]: Melbourne shuf-
fle is an oblivious, randomized algorithm for data shuffle.
Given a data array and a permutation (of the same length), the
computation of a data shuffle produces an array that reorders
the data array based on the permutation. Internally, the Mel-
bourne shuffle works in two data scans or passes, where the
first pass, called distribution, scans the data array at the gran-
ularity of size

√
N buckets and reorders individual buckets

non-obliviously with the size-p logN
√
N internal memory.

The second pass scans the array and sorts reorganized buck-
ets internally. Figure 2a illustrates an example of Melbourne

shuffle. Overall, the trusted memory is logN
√
N with array

length N . The details can be found in the original paper [22].
The Melbourne shuffle is mapped to TSX transactions such

that the accesses to internal storage are kept inside transactions
while external oblivious data accesses are kept outside trans-
actions. In Melbourne shuffle, the mapping is illustrated in
Figure 3 where the bucket-wise permutation multiplication in
the “distribute” pass and the bucket-wise sort in the “cleanup”
pass are mapped to individual transactions.

One implication of this mapping is that the internal storage
of logN

√
N must be smaller than that of the size of L1 cache,

which is one factor that constrains the scalability of CMOS on
real SGX hardware (see § 4.1).

3.4 Step 2: Isolating Cached Data by TSX
Isolating cached data is realized by data prefetching which

simply prefetch all data referenced inside a transaction. Given
a prefetched line, the TSX capability guarantees that at least
the line will not be replaced from LLC during the transac-
tion. Our goal in this work is to avoid self-eviction, that is, the
dataset prefetched does not conflict each other. Here, we con-
sider both conflict and capacity cache misses during prefetch-
ing. Given a set-associative cache, we lay out memory prop-
erly such that the number of conflicts in each cache set do not
exceed the capacity (i.e. the number of ways). This applies for
both L1 and LL caches.

Figure 2b shows how isolation is realized with the distri-
bution phase of Melbourne shuffle. First, data is prefetched
from the enclave to the cache. Second, it runs non-oblivious
computation on the cached data; this phase is wrapped in TSX
transactions to ensure no cache miss. Third, the end of the
transaction triggers the write-back of cached lines to the en-
clave memory. The second-phase transaction, in particular,
takes two continuous memory regions as input and output data
stored in another contiguous memory region. To avoid con-
flict in this layout, we partition the three regions at granular-
ity of cache lines and precompute (at compilation time) that
the number of conflicts in each cache set does not exceeds the
number of ways.

3.5 Implementation Notes
Abort Handling: Transaction aborts are handled by re-

executing the transactions. Before entering the transaction, the
context (all the values in registers) is saved to a memory area
pointed by a reserved register R15. Upon aborts, the handler
reloads the context prior to the transaction from R15, before
jumping back to the beginning of the transaction to re-execute
it. An important property is that the value of R15 must be pre-
served through the regular transactional path and abort path.

CPUID: Obtaining cache information (e.g. cache sizes)
is realized by calling the functions provided in Intel SGX
SDK [4] which switches out to the untrusted world and calls
CPUID instructions. Here, the result of CPUID is not neces-
sarily be trusted. The enclave can run test program to evaluate
the cache sizes itself. Concretely, it can read a series of ar-
rays with increasing lengths and the maximal length without
aborting transaction is the size of LLC cache. Similarly, it
can writes to a series of length-increasing arrays to obtain the
maximal length as L1 cache size.

Randomness generation: Melbourne shuffle is a random-
ized algorithm and we generate true randomness using SDK-
provided function sgx_read_rand.

1

6

5

7

2

0

8

4

3
b

c

d

e

f

g

h

i

a

1,b

3,a

6,c

2,f

5,d

7,e

0,g

4,i

8,h

b

f

a

i

d

c

e

h

g

Distribute Sort

Permu. Data Result

Bucket Bucket

(a) Melbourne shuffle: The example shows the shuffle of data
array (a,b,c,...,i) based on permutation (3,1,6,5,7,2,0,8,4). The
bucket used in the distribute pass is vertical and the bucket in
the sort pass is horizontal

1

2

�✁

SGX-TSX CPU Enclave Memory

Tx_begin

& prefetchTSX Transaction

Data array

Permutation array

Tx_commit

& write back

(b) Melbourne shuffle run in
SGX/TSX

Figure 2: Engineering Melbourne shuffle algorithms on SGX/TSX

1 int[] Melbourne_shuffle(int[] data, int[] perm){

2 perm_r = gen_perm();

3 data_r = shuffle_pass(data, perm_r);

4 perm_rr = shuffle_pass(perm, perm_r);

5 return shuffle_pass(data_r, perm_rr);

6 }

7 int[] shuffle_pass(int[] data, int[] perm){

8 int[][] inter = distribute(data, perm);

9 return cleanup(inter);

10 }

11 int[][] distribute(int[] data, int[] perm){

12 for(int i=0; i < sqrt(length(data));i++){

13 inter[i] = tx_bucket_permmul(data,perm,i);

14 }

15 return inter;

16 }

17 int[] cleanup(int[][] inter){

18 List res;

19 for(i < sqrt(length(data))){

20 res.add(t x _ b u c k e t _ s o r t(inter,i));

21 }

22 return res.toarray();

23 }

Figure 3: Melbourne shuffle mapped to TSX transactions

4. EVALUATION
This section evaluates the performance and abort rate of

CMOS system. Specifically, it aims at answering the follow-
ing two questions.

• What is the performance of CMOS comparing the base-
line of word-oblivious shuffle and pure transaction-
based protection?

• What is the abort rate of CMOS comparing with the
implementation without prefetching?

4.1 Performance
We consider two baselines for performance comparison

against CMOS. The first baseline (BL1) is pack the naive,
non-oblivious shuffle algorithm in TSX transactions whose
time complexity at O(N) is better than the O(

√
N logN)

complexity of Melbourne shuffle. The second baseline is the
word-oblivious shuffle that is realized by running a bubble
sort on the permutation array. This baseline has worse time
complexity than CMOS, but it does not need run transactions,
adding performance uncertainty.

16 64 256 1024 4096 16384 65536

Array length (# of integers)

0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
e
c
u
ti

o
n
 t

im
e
 (

u
s
e
c
)

CMOS

Shuffle in Tx (BL1)

Shuffle by sort (BL2)

Figure 4: Execution time of CMOS and other shuffle baselines

Experiment setup: We did all the experiments on a laptop
with an Intel 8-core i7-6820HK CPU of 2.70GHz, 32KB L1
and 8MB LL cache, 32 GB RAM and 1 TB Disk. This is one
of the Skylake CPUs equipped with both SGX and TSX fea-
tures. We use numeric datasets and generate them randomly.

In the evaluation, we measure the execution time and the
maximal data size supported. In transaction-based approaches,
the individual transaction is bounded by L1 cache size, which
in our platform is 32 KB.

The performance result is illustrated in Figure 4. It can be
seen that BL1 is the most efficient but with limited scalabil-
ity. BL2 has the best data scalability but may not be efficient,
especially when data size is large. CMOS starts to show supe-
rior performance when data size roughly grows beyond 4096.
CMOS can scale to larger dataset than BL2 because of its
smaller space complexity. It has smaller execution time than
BL1 because of the better time complexity.

4.2 Transaction Abort Rate
One of the design goals of prefetch in CMOS is to re-

duce the rate of self-abort. To evaluate the design effective-
ness, we run the program several runs and measure the aver-
age abort rate. We consider the first baseline that simply skips
the external prefetching. The baseline would cause transac-
tions to abort due to both interrupt (AC4) and cache write-back
(AC2) (recall § 2.2). We also consider two additional baselines
that do not cause write-back by placing nop instructions in a
transaction. This way, the baselines are only caused by inter-

256 512 1024 2048 4096

In-transaction data size (byte)

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

a
b
o
rt

s

CMOS

BL1 (WB + Interrupt)

BL2 (Interrupt-Lower)

(a) With Baseline 1,2

256 512 1024 2048 4096

In-transaction data size (byte)

0

200

400

600

800

1000

N
u
m

b
e
r

o
f

a
b
o
rt

s

CMOS

BL3 (Interrupt-Upper)

(b) With Baseline 3

Figure 5: Number of transaction aborts

rupt. We implement two variants: the second baseline, named
interrupt-lower, runs enough nop instructions such that the
running time is equal to the case that all memory references
are solved by cache hits. The third baseline, named interrupt-
upper, runs enough nop instructions such that the running
time is equal to the case that all memory references are solved
by cache misses. Note that to determine the appropriate num-
ber of nop instructions, we profile our SGX hardware using
some benchmark programs (e.g. calling cache-flush instruc-
tions to measure the cache-miss time).

We conduct experiments by running the four approaches
above multiple times. We vary the size of data referenced
inside the transaction and report the percentage of transac-
tion aborts during the execution, in Figure 5. As can be seen,
CMOS causes aborts that are fewer than BL1, close to BL2,
and are much fewer than BL3. Given BL2 is ideal lower bound
of aborts, the result shows that the CMOS design of dou-
ble prefetch is highly effective in reducing cache write-back
aborts. In addition, CMOS is approximately the same with the
Ideal-lower bound, which shows the CMOS design eliminates

the cache write-back aborts as the ideal can not be aborted by
cache write-back.

5. RELATED WORK
In this section, we survey the related work on defending

memory-access side-channel attacks on hardware enclaves.
Making memory access oblivious is a feasible defense strat-

egy to side-channel attacks in general. Comparing the cum-
bersome Oblivious RAM protocols [14, 26], oblivious al-
gorithms [21] are more lightweight and are promising to-
wards practical attack defense. Various data-analytical sys-
tems are developed based on the computation-specific obliv-
ious algorithms, such as Opaque [28] for relational data ana-
lytics and oblivious machine learning [23]. These systems in-
stantiate the notion of word-obliviousness; recall that its goal
is to make memory references at word granularity oblivious.
ObliVM [21] is a source-to-source program transformation
that translates the annotated program into efficient oblivious
algorithms. This line of research does not consider external-
oblivious algorithms and does not attain the cache-miss obliv-
iousness on SGX.

T-SGX [24] takes a general-purpose approach to defend the
page-fault side-channel attack [27]. T-SGX’s approach is to
assume the allocated memory is large enough to hold the data
referenced by the application, such that during execution there
is no page-fault. It leverages the TSX capability of detect-
ing page-faults in user-space programs. It partitions the pro-
gram and wraps the partitions into individual TSX transac-
tions. Similarly, work [25] takes a compiler approach to de-

fend the page-fault based side-channel attacks. It is based on
the notion of page-fault obliviousness.

This work is different from T-SGX in the following senses:
1) The goals are different: T-SGX is a defense of page-
fault side-channel attacks, and this work is to defend all soft-
ware/hardware memory-access pattern attacks on SGX. T-
SGX makes page-fault in enclave unobservable, while this
work is to make enclave execution cache-miss oblivious. 2)
The approaches are different: T-SGX defends by detecting
page faults inside TSX transactions, while this work defends
by detecting cache misses inside TSX transactions. While
both seem to rely on TSX, their use of TSX transactions is
fundamentally different, which will be elaborated on in the
next paragraph. 3) The applicability is different: T-SGX is
a general-purpose, compiler-based solution, and this work is
specific to data analytics and leverage the corresponding “se-
mantics” for better efficiency. In addition, T-SGX mainly fo-
cus on the security of code-page execution, while this work
focuses on data-obliviousness.

The use of TSX transactions in T-SGX and this work is dif-
ferent. In T-SGX, it assumes a memory large enough to store
all data pages and ensure no page-fault during enclave exe-
cution. Given the limited “size” allowed by a TSX transac-
tion, T-SGX packages enclave computation in as many TSX
transactions as needed and ensure the security of page-access
across transactions by placing all the code outside transaction
on a single page (so-called Springboard page). It is important
to note the Springboard code-page does not access memory on
any other pages. In this work, the TSX transactions are used
to isolate the enclave computation inside the processor and to
detect any (unexpected) cache misses. Across transactions,
the data security is ensured by running external oblivious al-
gorithms. This work is applicable to a more realistic setting
when handling a large volume of data, that is, we allow page-
fault during program execution and the working-set memory
can be much smaller than original dataset.

6. CONCLUSION
This work defends enclave side-channel attacks by cache-

miss obliviousness. The proposed approach is software engi-
neering the target oblivious computation on top of the SGX
and TSX platform. It proposes cache-miss oblivious algo-
rithms with small trusted space. It has several software-
engineering strategies that package the computation into TSX
transactions, achieving cache-miss obliviousness. Through
initial evaluation, the performance overhead of cache-miss
obliviousness is much smaller than that of the Strawman ap-
proach.

Acknowledge

This research is partly supported by the Cyber Research Insti-
tute in Rome, NY, under Grant Number #28254.

7. REFERENCES
[1] ARM TrustZone,

http://www.arm.com/products/processors/technologies/trustzone/.
[2] Google cloud platform supports intel sgx.
[3] IBM SCPU, http://www-03.ibm.com/security/cryptocards/.
[4] Intel corp. software guard extensions programming reference.
[5] Intel TXT, http://www.intel.com/technology/security/

downloads/trustedexec_overview.pdf.
[6] Intel’s transactional synchronization extensions (intel’s tsx) overview.
[7] Introducing azure confidential computing.

[8] TPM, http://www.trustedcomputinggroup.org/tpm-main-specification/.
[9] 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,

USA, May 17-21, 2015. IEEE Computer Society, 2015.
[10] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi.

Verifying constant-time implementations. In Holz and Savage [17], pages
53–70.

[11] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative
technology for cpu based attestation and sealing.

[12] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution. In 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, 2017. USENIX Association.

[13] V. Costan and S. Devadas. Intel SGX explained. IACR Cryptology ePrint
Archive, 2016:86, 2016.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43(3):431–473, 1996.

[15] L. Guan, J. Lin, B. Luo, and J. Jing. Copker: Computing with private
keys without RAM. In 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014.

[16] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting private keys
against memory disclosure attacks using hardware transactional memory.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015 [9], pages 3–19.

[17] T. Holz and S. Savage, editors. 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016. USENIX
Association, 2016.

[18] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007.

[19] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
fine-grained control flow inside SGX enclaves with branch shadowing.
CoRR, abs/1611.06952, 2016.

[20] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi.
Ghostrider: A hardware-software system for memory trace oblivious
computation. In Ö. Özturk, K. Ebcioglu, and S. Dwarkadas, editors,
Proceedings of the Twentieth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS
’15, Istanbul, Turkey, March 14-18, 2015, pages 87–101. ACM, 2015.

[21] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. Oblivm: A
programming framework for secure computation. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015 [9], pages 359–376.

[22] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal. The
melbourne shuffle: Improving oblivious storage in the cloud. In
Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part II, pages 556–567, 2014.

[23] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learning on
trusted processors. In Holz and Savage [17], pages 619–636.

[24] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. 2017.

[25] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In X. Chen, X. Wang, and X. Huang,
editors, Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 -
June 3, 2016, pages 317–328. ACM, 2016.

[26] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: an extremely simple oblivious RAM protocol.
In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
299–310, 2013.

[27] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015 [9], pages 640–656.

[28] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An oblivious and encrypted distributed analytics
platform. In 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017 ,

pages 283–298, 2017.

	Introduction
	Preliminary
	Intel Software Guard eXtension (SGX)
	Intel Transactional Synchronization eXtension (TSX)
	Use of TSX for Detecting Cache-Miss

	System Design and Impl.
	Threat Model
	Security Definition
	Step 1: Mapping Melbourne Shuffle to SGX
	Step 2: Isolating Cached Data by TSX
	Implementation Notes

	Evaluation
	Performance
	Transaction Abort Rate

	Related Work
	Conclusion
	References

