Data-Oblivious External Shuffling on SGX

Hao Zhou Under Supervision of Dr. *Yuzhe Tang*

Who Am I

- Hao Zhou
- Junior
- Computer Sciencer major

Goal: Secure Data Analysis on Emerging TEE

1. Emerging TEE: Intel SGX

 Intel® Software Guard Extensions (Intel® SGX) is an Intel technology for application developers who are seeking to protect select code and data from disclosure or modification.

Goal: Secure Data Analysis on Emerging TEE

1. Security: Data-Obliviousness

- Meaning: Data access trace independent of data values
- Example: Bubble sort versus Merge sort
- Time complexity: $O(n_2)$ versus $O(n \log n)$
- Tradeoff: Obliviousness and performance
- Our goal: We want both.
- 2. Data Analysis: Data shuffling
 - Meaning: Permutation multiplication
 - Data shuffling is a fundamental operator of oblivious data analysis

Goal: Secure Data Analysis on Emerging TEE

Focus of this work:

Implementing Melbourn shuffle on Intel SGX

Melbourne Shuffle [1]

Implementing Melbourne Shuffling with SGX-TSX

- TSX (Intel Transactional Synchronization eXtensions)
 - Two new instructions "XBEGIN", "XEND"
 - All the code between "XBEGIN" and "XEND" is in a TSX *transaction*
 - When cache miss happens inside a TSX transaction, the transaction abort

Implementing Melbourne Shuffling with SGX-TSX

My work: Implemented the Melbourne shuffle in **X86_64** *and* **C** (~400 LoC) *Demo: Functioning on real Intel SGX machine in our lab.*

Reference

The Melbourne Shuffle: Improving Oblivious Storage in the Cloud. ICALP (2) 2014: 556-567, Olga Ohrimenko, Michael T. Goodrich, Roberto Tamassia, Eli Upfal

Thank You

- Acknowledgement: FSS research group
 Professor: Dr. Yuzhe (Richard) Tang
 - PhD: Ju Chen, Amin Fallahi

