
HW6

Due: 11:59pm, April 29 (Sunday)

Consider a plant, where there are 16 part workers whose jobs are to produce three types of parts (A, B,

C, D). Each of them produces three pieces of parts each time, such as (1,1,1,0), (3,0,0,0), (1,2,0,0),

(0,1,0,2), (1,0,0,2) etc. All possible combinations will carry the same probability. In your program you

have to randomly generate one combination. Each part worker will attempt to place the parts

generated to a buffer area. Therefore, each combination (a, b, c, d) from a part worker is referred to as a

place request.

In addition, there are 12 product workers whose jobs are to take the parts from the buffer area and

assemble them into products. Each of them needs four pieces of parts each time; however, the four

pieces will be from exactly two types of parts, such as (3,1,0,0), (2,2,0,0), (0,2,0,2), (0,0,1,3), etc. with

equal occurrence probability. For example, a product worker will not make a request of (1,1,2,0),

(4,0,0,0), etc. Each such combination from a product worker is referred to as a pickup request. In your

program, you need to randomly generate one combination. Moreover, a buffer area to hold parts for

part workers has a capacity of 6 type A parts, 5 type B parts, 4 type C parts, and 3 type D parts. At any

moment, the numbers of parts of each type (a, b, c, d) is referred to as buffer state. A part work can

place parts to the buffer area up to the capacity, and wait for available space for remaining part(s) in the

place request if needed. For example, if the current buffer state is (5, 4, 4, 3) and a part worker

generates a (1,1,1,0) place request, then the buffer state will be updated to (6, 5,4, 3) and the part

worker’s place request will be updated to (0,0,1,0) and the part worker has to wait until the space for

type C becomes available. Similarly, a product work can pick up those available parts from the buffer

area and wait for the remaining part(s). For example, if the current buffer state is (2,1,0,0) and a

product worker generates a pickup request of (2,0,2,0), then the buffer state becomes (0,1,0,0) and the

product worker has to wait with a updated pickup request of (0,0,2,0).

In your simulation code, you should intend to allow each part worker and each product worker to

complete 5 requests. Your goal is to ensure that your code can complete the execution unless the

generate requests make it impossible.

When a park worker generates a place request or is awakened to continue a place-request, you need to
print ID, the current buffer state and the place request, and the updated buffer state and updated place-
request. If the buffer has sufficient space for the place request, then the updated place request will be
(0,0,0,0). Similarly, when a product worker generates a pickup request or is awakened to continue a
pickup request, you need to print the current buffer state and the pickup request, and the updated
buffer state and updated pickup request. If the buffer has all the requested parts for the pickup request,
then the updated place-request will be (0,0,0,0).

The following are examples for a place request and a pickup request.

(You need to make sure your output follows the same format.)
Note that there is a blank line between 2 requests.
There is a space after symbol ‘:’ .

In addition, if a thread detects a deadlock (i.e., no longer possible for any Part Worked to add parts to
buffer and no longer possible for any Product Worker to pick up parts from buffer), this thread will
return (i.e., terminate). In this case, “Return” will be printed. (See the third thread printout below.)

For grading convenience, I have introduced const variables m and n in main function to represent
number of Part Workers and number of Product Workers. Please update your code accordingly.

Part Worker ID: 8
Iteration: 2
Buffer State: (5,2,3,2)
Place Request: (2,0,1,0)
Updated Buffer State: (6,2,4,2)
Updated Place Request: (1,0,0,0)

Product Worker ID: 5
Iteration: 4
Buffer State: (2,3,4,3)
Pickup Request: (3,1,0,0)
Updated Buffer State: (0,2,4,3)
Updated Pickup Request: (1,0,0,0)

…

Part Worker ID: 3
Iteration: 4
Buffer State: (6,3,4,0)
Place Request: (2,0,0,0)
Updated Buffer State: (6,3,4,0)
Updated Pickup Request: (2,0,0,0)
Return

The following is a sample main function.

int main(){
 const int m = 16, n = 12; //m: number of Part Workers
 //n: number of Product Workers
 thread partW[m];
 thread prodW[n];
 for (int i = 0; i < n; i++){
 partW[i] = thread(PartWorker, i);
 prodW[i] = thread(ProductWorker, i);
 }

 for (int i = n; i<m; i++) {
 partW[i] = thread(PartWorker, i);
 }

 /* Join the threads to the main threads */
 for (int i = 0; i < n; i++) {
 partW[i].join();
 prodW[i].join();
 }
 for (int i = n; i<m; i++) {
 partW[i].join();
 }

 cout << "Finish!" << endl;

 getchar();
 getchar();
 return 0;

}

